Logarithmic concavity for morphisms of matroids
نویسندگان
چکیده
منابع مشابه
h-Vectors of matroids and logarithmic concavity
Article history: Received 11 November 2012 Accepted 4 November 2014 Available online 13 November 2014 Communicated by Ezra Miller MSC: 05B35 52C35
متن کاملMatroids and log-concavity
We show that f -vectors of matroid complexes of realizable matroids are strictly log-concave. This was conjectured by Mason in 1972. Our proof uses the recent result by Huh and Katz who showed that the coefficients of the characteristic polynomial of a realizable matroid form a log-concave sequence. We also prove a statement on log-concavity of h-vectors which strengthens a result by Brown and ...
متن کاملLogarithmic Concavity and SI2(C)
We observe that for any logarithmically concave nite sequence a 0 , a 1 , : : : , a n of positive integers there is a representation of the Lie algebra sl 2 (C) from which this logarithmic concav-ity follows. Thus, in applying this strategy to prove logarithmic concavity, the only issue is to construct such a representation naturally from given combinatorial data. As an example, we do this when...
متن کاملLog-concavity of characteristic polynomials and the Bergman fan of matroids
In a recent paper, the first author proved the log-concavity of the coefficients of the characteristic polynomial of a matroid realizable over a field of characteristic 0, answering a long-standing conjecture of Read in graph theory. We extend the proof to all realizable matroids, making progress towards a more general conjecture of Rota–Heron–Welsh. Our proof follows from an identification of ...
متن کاملSome concavity properties for general integral operators
Let $C_0(alpha)$ denote the class of concave univalent functions defined in the open unit disk $mathbb{D}$. Each function $f in C_{0}(alpha)$ maps the unit disk $mathbb{D}$ onto the complement of an unbounded convex set. In this paper, we study the mapping properties of this class under integral operators.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2020
ISSN: 0001-8708
DOI: 10.1016/j.aim.2020.107094